“The authority of those who teach is often an obstacle to those who want to learn.” ― Marcus Tullius Cicero

My Instagram

Powered by Blogger.

Follow The Author

IDENTITAS TRIGONOMETRI

Identitas Trigonometri

gambar segitiga
Dalam suatu segitiga siku-siku, selalu berlaku prinsip phytagoras, yaitu a^2+b^2=c^2. Pada materi ini, prinsip phytagoras ini menjadi asal pembuktian identitas trigonometri sendiri.
a^2+b^2=c^2 bagi kedua ruas dengan c^2, diperoleh persamaan baru \frac{a^2}{c^2}+\frac{b^2}{c^2}=1. Sederhanakan dengan sifat eksponensial menjadi (\frac{a}{c})^2+(\frac{b}{c})^2. Dari persamaan terakhir, subtitusi bagian yang sesuai dengan perbandingan trigonometri pada segitiga, yaitu \sin \alpha = \frac{a}{c} dan \cos \alpha = \frac{b}{c}, sehingga diperoleh (\sin \alpha^2 + (\cos \alpha)^2 = 1atau bisa ditulis menjadi \sin^2 \alpha + \cos^2 \alpha = 1.
Dari identitas yang pertama, dapat diperoleh bentuk lainnya, yaitu:
\sin^2 \alpha + \cos^2 \alpha = 1 bagi kedua ruas dengan \cos^2 \alpha, diperoleh (\frac{\sin \alpha}{\cos \alpha})^2 + 1 = \frac{1}{\cos^2 \alpha}dimana \frac{\sin \alpha}{\cos \alpha} = \tan \alpha dan \frac{1}{\cos \alpha} = \sec \alpha, sehingga diperoleh: \tan^2 \alpha + 1 = \sec^2 \alpha
Bentuk ketiga yaitu \sin^2 \alpha + \cos^2 \alpha = 1 dibagi dengan \sin^2 \alpha menjadi 1 + \frac{\cos^2 \alpha}{\sin^2 \alpha}=\frac{1}{\sin^2 \alpha}, dimana \frac{\cos \alpha}{\sin \alpha} = \cot \alpha dan \frac{1}{\sin \alpha} = \csc \alpha, sehingga diperoleh persamaan: 1+\cot^2 \alpha = \csc^2 \alpha.

Contoh Soal Trigonometri

Tentukanlah nilai dari  sin 1200 + cos 2100  + cos 3150
Jawab:
\sin 120^{\circ} berada pada kuadran 2, sehingga nilainya tetap positif dengan besar sama seperti \sin 120^{\circ} = \sin (180-60)^{\circ} = \sin 60^{\circ} = \frac{1}{2} \sqrt{3}
\cos 120^{\circ} berada pada kuadran 3, sehingga nilainya negatif dengan besar sama seperti \cos 120^{\circ} = \cos (180+30)^{\circ} = - \cos 30^{\circ} = - \frac{1}{2} \sqrt{3}
\cos 315^{\circ} berada pada kuadran 4, sehingga nilainya positif dengan besar sama seperti \cos 315^{\circ} = \cos (360-45)^{\circ} = \cos 45^{\circ} = \frac{1}{2} \sqrt{2}
Jadi

No comments